B O T A N Y．

BY

JOHN LINDLEY，Pe，D．F．R．S．，

WIFH SIX COPPERPLATES AND NUREROLS FOOD EXGRAYMGS．

FOURTH EDITION，
with contectiong hid somenols adotions，
$;$
IN Two volumes．
YOL．II．

LONDON：
LONGMAN，BROWN，GREEN，AND LONGMANS， paternoster row．
mbcecxlimit．

CONTENTS OF VOL. II.

ORGANOGRAPHY (Continuted.)

```
Cinip. II. (Contimued.)
page
```

Fruit 1
Classification of Fruits 16
Sced 25
Albumen 54
Embryo 59
Germination 62
Naked Sceds 69
Morphology of Floral Organs 70
Grap. III. Compound Organs in Flowerless Plants, or Acrogens 82
Ferns 93
Lycopodiaces 98
Marsileacem 101
Equisotacem 114
Mosses and Andræacere 106
Jungermanniacea and Hepatica 114
Liehens 117
Fungacee 119
Algacese 122
BOOK II.-Physiology.
Chap, I. General Considerations 132
Cibar. II. Vitality 144
Crap. III. Chemical Constitution of the Elementary Organs 162
Cluap. IV. Elemontary Organs 171
Crap. V. Root 180

INTRODUCTION

T0

B O T A N Y.

Book I.

ORGANOGRAPHY; OR, OF THE STRUCTURE OE PLANTS.

CHAPTER II.

P THE COMPOOND organs in flowering plants-continued.

14. Of the Fruit.

The fruit (figs. 186. to 168.) is the ovary or pistil arrived存 maturity. But, although this is the sense in which the ferm is strictly applied, yet in practice it is extended to whatever is combined with the ovary when ripe. Thus the pinegpple fruit consists of a mass of bracts, calyxes, corollas, and fraries; that of the nut; the acorn, and many others, of the fiperior dry calyx and ovary; that of the apple of a succulent Guperior calys, corolla, and ovary; and that of the strawberry. Pite of a succulent inferior calyx and dry ovary.
The fruit being the matured ovary, it should exhibit upon筑me part of its surface the traces of a style or stigma; and fhis mark will, in many cases, enable the student to distingivis minute fruits from seeds. Many fruits were formerly Glled naked seeds, such as those of Umbellifers, Labiates, find Borageworts, and the grain of corn ; but now that attenHou has been paid to the gradual development of organs, fith errors have been corrected. In cases where a trace of YOL. II.
the style cannot be discovered, anatomy will generally show whether a minute body is a seed or fruit, by the presence, in the latter case, of two separable and obriously organicaly distinct coatings to the nucleus of the seed; but in other cases, where the pericarp and the integuments of the seeds are combined in a single covering, and where no trace of style remains, as sometimes happens, nothing can be determined as to the exact nature of a given body without following it back in its growth to its young state. This, however, may be stated, that naked seeds, properly so called, are not known to exist, unless accidentally, in more than three or four orders in the whole regetable lingdom; viz. in Conifers and Cycads, where the opules also are naked, and in Peliosanthes Teta and Leontice, in which the ovules, originally enclosed in an ovary, uniformly rupture it at an early period after fertilisation, and subsequently continue naked until they become seeds.

Such being the case, it follows that all the laws of structure which exist in the ovary are equally to be expected in the fruit; and this fact renders a repetition in this place of the general laws of formation unnccessary. Nevertheless, as, in the course of the advance of the ovary to maturity, many changes often oceur which contribute to conceal the real structure of the fruit, it is in all cases advisable, and in many absolutely necessary, to examine the ovary, in order to be certain of the exact construction of the fruit itself. These changes are caused by the abortion, non-development, obli, teration, addition, or union of parts. Thus the three-celled six-oruled ovary of the oak and the hazel becomes, by the non-derelopment of two cells and five ovules, a fruit with onet seed; the three-celled ovary of the cocoa-nut is converted into a one-celled fruit, by the obliteration of tro cells and their ovules; and the two-celled orary of some Pedaliads becomes many-celled, by a division and elongation of the plag cente. In Cathartocarpus Fistula a one-celled ovary changex into a fruit having each of its many seeds lodged in a separato cell, in consequence of the formation of numerous horizontals membranes which intercept the seeds. A still more extrat ordinary confusion of parts takes place in the fruit of the
pomegranate after the ovary is fertilised; and many other cases might be mentioned.

Every fruit consists of two principal parts, the pericarp and the seed, the latter being contaimed within the former. When the ovary is inferior, or coheres with the calyx, the latter and the pericarp are usually so completely united as to be inseparable and undistinguishable: in such cases it is usual to speak of the pericarp without reference to the calyx, as if no such union had taken place. Botanists call a fruit, the pericarp of which adheres to the calyx, an inferior fruit (fructus inferus) ; and that which does not adhere to the calyx, a superior fruit (fructus superus). But Dessaux has coined other words to express these ideas: a superior fruit he calls autocarpic ; an inferior fruit, heterocarpic; terms unnecessary and unworthy of adoption.

Ererything which in a ripe fruit is on the outside of the real integuments of the seed, except the aril, belongs to the pericarp. It consists of three different parts, the epicarp, the sarcocarp, and the endocarp; terms contrived by Richard, and useful in practice.

The epicarp is the external integument or skin; the endocarp, called putamen by Grertner, the inner coat or shell; and the sarcocarp, the intermediate fiesh. Thus, in the peach, the separable skin is the epicarp, the pulpy flesh the sarcocarp, and the stone the endocarp or putamen. In the apple and pear the epicarp is formed by the cuticle of the calyx, and the sarcocarp is confluent with the remainder of the calyx in one fleshy body.
The pericarp is extremely diversified in size and texture, parying from the dimension of a single line in length to the magnitude of two feet in diameter ; and from the texture of a delicate membrane to the coarse fabric of wood itself, through various cartilaginous, coriaceous, bony, spongy, succulent, or fibrous gradations.

The base of the pericarp is the part where it unites with the peduncle; its apex is where the style was: hence the organic and apparent apices of the fruit are often very different, especially in such as have the style growing from
their sides, as in Rosacea and Chrysobalanacea, Labiatz and Boraginacea.

When a fruit has arrived at maturity, its pericarp either continues perfectly closed, when it is indehiscent, as in the hazel nut; or separates regularly round its axis, either wholly or partially, into several pieces ; the separation is called dehis cence, and such pieces valves; and the axis from which the valves separate, in those cases where there is a distinct axis, is called the columella.

When the dehiscence takes place through the dissepiments; it is said to be septicidal; when through the back of the cells, it is called loculicidal; if along the inner edge of a simple fruit it is called sutural; if the dissepiments are separated from the valves, the dehiscence is named septifragal.

In septicidal dehiscence the dissepiments divide into two plates and form the sides of each valve, as in Rhododendron, Menziesia, \&c. Formerly botanists said that in this sort of dehiscence the valves were alternate with the dissepiments, or that the valves had their margins turned inwards. This may be understood from flg. 169 ., which represents the

relative position of parts in a transperse section of a frait with septicidal dehiscence ; v being the valves, d the dissepiments, and a the axis.

In loculicidal dehiscence the dissepiments form the middie of each valve, as in the lilac, or in the diagram 170. ,
where the letters have the same value as above. In this it was formerly said that the dissepiments were opposite the valves.

In septifragal dehiscence the dissepiments adhere to the axis and separate from the valyes, as in Convolvalus; or in the diagram 771 ., lettered as before.

In sutural dehiscence there are no dissepiments, the fruit being composed of only one carpel, as the Pea.

Besides these regular forms of valvalar dehiscence, there is a very anomalous mode which oceurs in a very few plants, and is called circumscissile. This takes place by a transverse circular separation, as in Anagallis; in Jeffersonia it only takes place half round the fruit. In some cases, as in lomentaceous legumes, the transverse disarticulation may be supposed to have some relation to the pinmate leaves, whose modification, in those instances, forms the carpel. In other cases the explanation is far less obvious, and must be at least very different. Perhaps the best account of transwerse dehiscence is that of Mr. Hincks, as reported in the Annals of Natural History, vol. xvii.
"In the fruit, as in the calyx, this author believes that horizontal disruption arises from the force of cohesion of the parts of the circle, the absence of any of the causes favourable to dehiscence along the midrib of the carpeliary leaf, and the operation of some force pressing either from without or from within on one particular line encircling the fruit. In the circumscissile capsule of Anagallis, he states that the central free receptacle with the seeds upon it continoing to enlarge in both diameters after the envelope has ceased to grow, and having occupied from the first the entire carity, it is
naturally to be expected, since the chief extension of the interior parts is upwards (the natural direction of growth), while the enlargement of the seeds in the lower half tends to press back the parts of the lower hemisphere, that uniform and regular pressure will resolve a nearly spherical capsule into two equal hemispheres. This remark he applies to Centan: culus also, but confesses himself at a loss to give any reason why the opening of Trientalis, which depends on the same general causes, should be irregular. For the separation of the lid of the capsule in Hyoscyamus he accounts by the contraction and rigidity of the throat of the calyx exercising a gradually increasing pressure around the upper part of the capsule, and thus causing its separation by the first of the general principles laid down. Lecythis, he thinks is to be explained by the third of his general principles. In illustantion he refers to a monstrosity of the common Tulip. In this monstrosity, the upper leaf, being unusually developed, cohered by its edges so firmly as to imprison the flower, and this constraint occurring at a period when the stalk was increasing in lengti, and previous to any considerable enlargement of the flower-bud, the force applied was chiefly vertical, and carried off the upper part of the leaf in the form of a calyptra, learing the lower part in the shape of a cup, from the centre of which the stem appeared to rise. The separation of the lid of the capsule of Lecythis, Mr Hincks believes to be effected in an analogous manner; the septa which form the two or four cells into which the fruit is divided, meet in a thickened axis, and the outer part of the fruit becoming (partly from its natural texture, and partly from the adherence of the torus and calyx) hard, solid, and fully gromn, while the axis continues slowly to extend, and thus to press upwards that portion of the capsule which rests upon it, causes that portion first to become slightly prominent, and finally by a strain upon the vessels of that particular part to fall off in the shape of a $i d$. In Couroupita the pressure is sufficient to mark the surface of the fruit with a promi. nence, but from the partitions giving way eariy, and from the abundant juices produced in the interior, there has not been sufficient pressure to oceasion disruption. In all the species
of Lecythis, the extent of the loose cover corresponds with the extent of the axis, and what remains of the latter continues attached to it. As regards Lomentaceous fruits in general, the author believes that the intervals between the seeds being sufficient to admit of the sides of the firuit cohering (which is promoted in particular instances by special causes), the swelling of the seeds afterwards stretches the parts over them in a degree which this coherence prevents from being equally distributed, drags the tissue forcibly from the junetures which are fixed points, and thus there being a strain in each direction from the middle line of the joncture the contraction of drying in the ripening of the fruit effects the separation."

Valvular dehiscence, which is by far the most common mode by which pericarps open, must not be confounded with either rupturing or solubility,-irregular and unusual contrivances of nature for facilitating the dispersion of seeds. In valrular dehiscence the openings have a certain reference to the cells, as has been already shown; but neither rupturing nor solubility bear any distinct relation to the cells. Rupturing consists in a spontaneous contraction of a portion of the pericarp, by which its texture is broken through, and holes formed, as in Antirrhinum and Campanula. Solubility arises from the presence of certain transverse contractions of a one-celled pericarp, through which it finally separates into several closed portions, as in Ornithopus.

For the nature of the placenta and umbilical cord see the observations under ovary. Of these parts, which are mere modifications of each other, the former often acquires a spongy dilated substance, occasionally dividing the cells by spurious dissepiments, and often giving to the fruit an appearance much at variance with its true nature.

In some seeds, as Euonymus europaus, it becomes exceedingly dilated around each seed, forming an additional envelope, called aril. The true character of this organ was unknown till it was settled by Richard: before his time the term was applied, not only in its true sense to an enlargement of the
placenta, but also to the endocarp of certain Cinchonads and Rueworts, to the seed-coat of Jasminum, of Orchids, and others, and even to the perianth of Carex. A very remarkable instance of the aril is to be found in the nutmeg, in which it forms the part called the mace surrounding the seed. It is never developed until after the fertilisation of the ovule. It will be further and much more particularly treated of, when speaking of the seed.

Haring thus explained the structure of the pericarp, it is in the next place necessary to inquire into the nature of its modifications, which in systematic botany are of considerable importance. It is, on the one hand, very much to be regretted that the terms employed in this department of the science, which is that of Carpology, have been often used so vaguely as to have no exact meaning; while, on the other hand, they have been so exceedingly multiplied by various writers, that the language of carpology is a mere chaos. In practice but, a small number of terms is actually employed; but for collections of fruits, or minute carpological arrangements, a large number is desirable; and it cannot be doubted that, if it were not for the excessive inconvenience of overburdening the science with words, it would conduce to clearness of description if botanists would agree to make use of some precise and uniform nomenclature.

What, for instance, can be more embarrassing than to find the term nut applied to the superior plarilocular pericarp of Verbena, the gland of Corylus, and the achenia of Rosa and Borago: and that of berry to the fleshy envelope of Taxus, the polyspermous inferior fruit of Ribes, the succulent calyx of Blitum, and several other things?

So much discordance, indeed, exists in the application of terms expressive of the modifications of fruit, that it is quite indispensable to give the defnitions of some of the most eminent writers upon the subject in their own fords, in order that the meaning attached by those authors to carpological terms, when employed by themselves, may be clearly understood.

In the phraseology of writers antecedent to Linneus, the
following are the only terms of this description employed; ทiz, :-

1. Bacca, a berry: any fleshy fruit.
2. Acinus, a bunch of fleshy fruit : especially a bunch of grapes.
3. Cachrys, a cone: as of the pine tree.
4. Pilula, a cone like the Galbulus of modern botanists.
5. Folliculus (Fuchs), any kind of capsule.
6. Grossus, the fruit of the fig unripe.
7. Siliqua, the coating of any fruit.

In his Philosophia Botanica, Linnaus gives the following definitions of the terms he employs :-

1. Capsula, hollow, and dehiscing in a determinate manner.
2. Siliqua, two-valved, with the seeds attached to both sutures.
3. Legumen, two-valved, with the seeds attached to one suture only.
4. Conceptaculum, one-valved, opening longitudinally on one side, and distinct from the seeds.
5. Dropa, fleshy, without valves, containing a nut.
6. Pomum, fleshy, without valves, containing a capsule,
7. Bacca, fleshy, without valves, containing naked seeds.
8. Strobilus, an amentum converted into a pericarp.

Gertner has the following, with definitions annexed to them :-

1. Capsula, a dry, membranous, coriaceous, or woody pericarp, sometimes valveless, but more commonly dehiscing with valves. Its varieties are,--
a. Utriculus, a umilocular one-seeded capsule, very thin and transparent, and constantly valvular ; as in Chenopodium, Atriplex, Adonis.
b. Samara, an indehiscent, winged, one- or two-celled capsule; as Ulmus, Acer, Liriodendron.
c. Folliculus, a double one-celled, one-valyed, membranous, coriaceous capsule, dehiscing on the inside, and either bearing the seed on each margin of its suture, or on a receptacle common to both margins; as Asclepias, Cinchona, and Vinca.
2. Nux, a hard pericarp, either indehiscent or never dividing into more than two valyes; as in Nelumbium, Boraginex, and Anacardium.
3. Coccum, a pericarp of dry elastic pieces or coccules, as in Diosma, Dictamnus, Euphorbia.
4. Drupa, an indehiscent pericarp with a variable rind, very different in substance from the putanen, which is bony, as in Lantana, Cocos, Sparganium, Gaura, \&c.
5. Bacca, any soft pericarp, whether succulent or otherwise; provided it does not dehisce into regular valves, nor contain a single stone adhering to it. Of this the following are kinds:-
a. Acinus, a soft, succulent, semi-transparent, unilocular berry, with one or two hard seeds; as the Grape, Rivina, Rhipsalis, Rubus, Grossularia, \&c.
b. Pomum, a succulent or fleshy, two- or many-eelled berry, the dissepiments of which are fleshy or bony, and coherent at the axis; as Pyrus, Crategus, Cydonia, Sapota, and others.
c. Pepo, a fleshy berry, with the seeds attached at a distance from the axis, upon the parietes of the pericarp; as Cucumis, Stratiotes, Passiflora, Vareca, and others.
To the term bacca, all other succulent fruits are referred which do not belong to Acinus, Pomum, or Pepo; as Garcinia, Caryophyllus, Cucubalus, Hedera.
6. Legumen, the fruit of Leguminose.
7. Siliqua and Silicula, the froit of Cruciferes.

Wrlldenow defines those employed by him in the follow': ing manner :-

1. Utriculus, a thin skin enclosing a single seed. Adonis, Galium, Amaranthus.
2. Samara, a pericarp containing one seed, or at most two, and surrounded by a thin membrane, either along its whole circumference, or at the point, or even at the side. Ulmus, Acer, Betula.
3. Folliculus, an oblong pericarp bursting longitudinally on one side, and filled with seeds. Vinca.
4. Capsula, a pericarp consisting of a thin coat containing many seeds, often divided into cells, and assuming: various forms. Silenc, Primula, Scrophularia, Euphorbia, Magnolia.
5. Nux, a seed covered with a hard shell which does not burst. Corylus, Quercus, Caunabis.
6. Drupa, a nut covered with a thick succulent or cartilaginous coat. Prunus, Cocos, Tetragonia, Juglans, Myristica, Sparganium.
7. Bacca, a succulent fruit containing severnl seeds, and not dehiscing. It encloses the seeds without any determinate order, or it is divided by a thin membrane into cells. Ribes, Garcinia, Hedera, Tilia. Rubus has a compound bacca.
8. Pomum, a fleshy fruit that internally contains a capsule for the seed. It differs from the celled berry in having a perfect capsule in the heart. Pyrus.
9. Pepo, a succulent fruit which las its seeds attached to the inner surface of the rind. Cucumis, Passiflora, Stratiotes.
10. Siliqua, a dry elongated pericarp consisting of two valves held together by a common permanent suture. Cruciferm. Silicula is a small form of the same.
11. Legumen, a dry elongated pericarp consisting of tro valves externally forming two sutures. Leguminosw.
12. Lomentum, a legumen divided internally by spurious dissepiments, not dehiscing longitudinally, but either remaining always closed, as in Cathartocarpus fistula, or separating into pieces at transverse contractions along its length, as in Ornithopus.
The following are enumerated as spurious fruits :-
13. Strobilus, an amentum the scales of which have become woody. Pinus.
14. Spurious capsule. Fagus, Rumex, Carex.
15. Spurious nut. Trapa, Coix, Mirabilis.
16. Spurious drupe. Taxus, Anacardium, Semecarpus.
17. Spurious bacca. Juniperus, Fragaria, Basella.

By this author the names of fruits are; perhaps, more loosely and inaccurately applied than by any other.

Link objects to applying particular names to variations in anatomical structure; observing, "that botanists have strayed far from the right road in distinguishing these terms by characters which are precise and difficult to seize. Terms are
only applied to distinct parts, as the leaf, peduncle, calys, and stamens, and not to modifications of them. Who has ever thought of giring a distinct name to a labiate or papilionaceous corolla, or who to a pinated leaf?" But this reasoning loses its value, then it is considered that the fruit is subject to infinitely greater diversity of structure than any other organ, and that names for these modifications are useful, for the sake of aroiding a minute explanation of the complex differences upon which they depend. Besides, to admit, as Link actually does, such names as capsula, Re, is abandoning the argument; and when the following definitions, which this learned botanist has proposed, are considered, I think that little doubt will exist as to whether terms should be employed in the manner recommended by himself, or with the minute accuracy of the French. According to Professor Link, the following are the limits of carpological nomen-clature:-

1. Capsula, any dry, membranous, or coriaceous, pericarp.
2. Capsella, the same, if small and one-seeded.
3. Nua, externally hard.
4. Nucula, externally hard, small, and one-seeded.
5. Drupa, externally soft, intergally hard.
6. Pomum, fleshy or succulent, and large.
7. Bacca, fleshy or succulent, and small.
8. Bacca sicca, fleshy when unripe, dry when ripe, and then distinguishable from the capsule by not being brown.
9. Legumen, $\}$ the pericarps of certain natural orders.
10. Amphispermium, a pericarpium which is of the same figure as the seed it contains.
In more recent times there have been three principal attempts at classing and naming the different modifications of fruit; namely, those of Richard, Mirbel, and Desvaus. These writers have all distinguished a considerable number of variations, of which it is important to be aware for some purposes, although their nomenclature is not much employed in practice. But, in proportion as the utility of a classification of fruit consists in its theoretical explanation of structure
rather than in a strict applicability to practice, it becomes important that it should be founded upon characters which are connected with internal and physiological distinctions rather than with external and arbitrary forms. Viewing the subject thus, it is not to be concealed, thiat, notwithstanding the wndoubted experience and talent of the writers just mentioned, their carpological systems are essentially defective. Besides this, each of the three writers has felt himself justified in contriving a nomenclature at variance with that of his predecessors, for reasons which it is difficult to comprehend.

If a complete carpological nomenclatuxe is to be established, it ought to be carried farther than has yet been done, and to depend upon principles of a more strictly theoretical character. I have aceordingly ventured to propose an arrangement, in which an attempt has been made to adjust the synonymes of carpological writers, and in which the names that seem to be most legitimate are retained in every case, their definitions only being altered; previously to which I shall briefly explain the methods of Richard, Mirbel, and Desvaux.

The Arrangement of Richard.
Class I. Simple fruits. §1. Dry.

* Indehiscent.
* * Dehiscent.
§ 2. Fleshy.
Class 2. Multiphed fruits.
Class 3. Aggregate or compound fruits.

The Arrangemest of Mirbel.

Class 1. Gymmocarpians. Fruit not disguised by the adherence of any other organ than the calyx.
Ord. 1. Carcerular. Pericarpium indehiscent, but sometimes with apparent sutures, generally dry, superior or inferior, mostly unilocular and monospermons, sometimes plurilocular and polyspermous.

Ord. 2. Capsular. Pericarpium dry, superior, or inferior, opening by valves, but never separating into distinct pieces or coeci.
Ord. 3. Dieresilian. Pericarpium superior or inferior, dry, regular, and monocephalous (that is, lawing one common style), composed of several distinct pieces arranged systematically round a central real or imaginary axis, and separating at maturity.
Ord, 4. Etarionar. Pericarps several, irregular; superior, one- or many-seeded, with a suture at the back.
Ord. 5. Cenobionar. A regular fruit divided to the base into several acephalous pericarpia; that is to say, not marked on the stmmit by the stigmatic scar, the style having been inserted at their base.
Ord. 6. Drupaceous. Pericarpium indehiscent, fleshy extemally, bony internally.
Ord. 7. Baccate. Suceulent, many-seeded.
Cless 2. Angiocarpians. Fruit sented in envelopes not forming part of the calys.

> The Arrangement of Desvatx.

Class 1. Pericarpium dry.
Ord. 1. Simple fruits.
§ Indehiscent.
§ \& Dehiscent.
Ord. 2. Dry compound fruits.
Class 2. Pericarpiom fleshy.
Ord. l. Simple fruits.
Ord. 2. Compound froits.
In explanation of the principles upon which the classification of fruit which I now venture to propose is founded, it will of course be expected that I should offer some observations. In the first place, I have made it depend primarily upon the structure of the opary, by which the fruit is of necessity infuenced in a greater degree than by anything
else, the fruit itself being only the ovary matured. In using the terms simple and compound, I have employed them precisely in the sense that has been attributed to them in my remarks upon the owary ; being of opinion that, in an arrangement like the following and those which have preceded it, in which theoretical rather than practical purposes are to be served, the principles on which it depends should be conformable to the strictest theoretical rules of structure. A consideration of the fruit, without reference to the ofary, necessarily induces a degree of uncertainty as to the real nature of the fruit; the abortion and obliteration to which almost epery part of it is more or less subject, often disguising it to such a degree that the most acute carpologist would be unable to determine its true structure, from an examination of it in a ripe state only. In simple fruits are stationed those forms in which the ovaries are multiplied so as to resemble a compound fruit in every respect except their cohesion, they remaining simple. But, as the passage which is thus formed from simple to compound fruits is deviated from materially when the ovaries are placed in more than a single series, I have found it advisable to constitute a particular class of such, under the name of aggregate fruit. Care must be taken not to confound these with the fourth class containing collective fruits, as has been done by more carpologists than oned While the true aggregate fruit is produced by the ovaries of a single flower, a collective fruit, if aggregate, is produced by the ovaries of many fiowers; a most important difference. As the pericarp is necessarily much affected by the calyx when the two adhere so as to form a single body, it is indispensable, if a clear iden is to be attached to the genera of carpology, that inferior and superior fruits should not be confounded under the same name: for this reason I have in all cases founded a distinction upon that character.
In order to facilitate the knowledge of the limits of the genera of capology, the following analytical table will be found convenient for reference. It is succeeded by the characters of the genera in as much detail as is necessary for the perfect understanding of their application.

Class I. Fruit gimple, APOCARPI,
One- or two-seeded:
Membranous, Utriculus.
Dry and bohy, Achemitim.
Flesly exteraplly, bony internally, . . Drupa.
Many-seeded:
Delpiscent :
One-valyed, Folliculus.
Tworfalyed, Iegumen.
Indehiscent, Eomentum.
CI.ass II, Fruit aggregate. AGGREGATL.

Owaria elevated above the calyx :
Pericarpia distinet, Etierio.
Pericarpia cohering into a solid mass, . . . Srncarpium.
Ovaria enclosed within the fleshy tube of the calys, . Cymarrhomus.

Class III. Fruit compound. SYNCARPT.
Sect. 1. Superion:
A. Pericarpium dry externally:

Indehiscent:
One-celled, Chrifopsis.
Many-celled:
Dry interially :
Apterous, Carcernulus.
Winged, Samara.
Pulpy internally, . . . Ampissabos.
Dehiscent:
By a transverse sutore, . . . Pyxidiom.
By elastic cocei, Regans.
By a longitudinal suture, , . . Concerptaculoz.
By valves:
Placenta opposite the lobes of the stigma:
Linear, Siliqua.
Roundish, . . . Stireula.
Placenter alfernate with the lobes of the stigma :
Valves separating from the replum, Ceratiem.
Replum none, . . . Carsuld.
B. Pericarpium fleshy :

Indehiscent:
Sarcocarpium separable, . . . Hesperiditm.
Sarcocarpium inseparable, . . . Nucuranion.
Dehiscent, Tryma.
Sect, 2. Inferior :
A. Pericarpium dry :

Indehiscent:
Cells two or more, Ceemocappitur.

Cell one:
Surrounded by \& cupulate involucrum, Glays.
Destitute of a cupula, . . . Cypsela.
Dehiscent or ruptaring, . . . Diplotecha.
B. Periearpium flesly :

Epicarpium hard:
Seeds parietal, Pepo.
Seeds not parietal, . . . Balaugsta.
Epicarpium soft :
Cells obliterated, or unilocular, . . Bacca. Cells distiuct, Pomum,

Class IV. Collective finits. ANTHOCARPI.
Single:
Periantlum induated, dry, Diclesivm
Pertanthum feshy, .
Aggregate:

- \$phalerocar-

Holliow, PICM.

Convex:
Ar indurated amentum, . . . Strobilus.
A succulent spike, Sorosis.

ㅍ․ Syncarpous Cnpsule of Euonytimus. 137. Aporarpous Capaule of Nigells. 138. Legumen. 138. Legumen with the two velves opened. 140. Folliculus. 141. Conceptaculum, or Double Foliterius. 142. Apacarpors Cngisule of Delpbinium. 143. Capsule of Lyelralis. 144. Capsule of Lychnis cut througb, and showing the freq central placenta.

Class I. Fruit simple. APOCARPI.

Owario strictly stimple; a stagle serits oniy produced by a single fower.
I. Unriculus, Geaner. (Cystidium, Iinle)

One-celled, one- or few-seeded, superior, membranous, frequently dehiscent by a transverse incision. This differs from the pyridimin in texture, being strietly simple, i. c. not proceeding from an ovarium with obliterated dissepiments.

Example. Amaranthus, Chenopodium.
FOL. 11.

IL. Acheniom. (Akerium, of many; Spermidium; Xylodium, Deev. ; The- cidium, Mirb. ; Nux, Linn.)
One-seeded, one-celled, superior, indehiscent, hard, dry, with the integuments of the seed distinct from it.

Linneus includes this among his seeds, defining it " semen tectum epidermide ossea." I have somewhere seen it named Spermidium ; a good term if it were wanted. M. Desvaux calls the nut of Anacardium a Xylodiurn.

Examples. Lithospernum, Borago.
III. Drupa, Drupe. ñg. 165.

One-celled, one- or two-seeded, superior, indebiscent, the outer coat (nawcum) soft and fleshy, and separable from the inner or sndocarpium (the stone), which is hard and bony; proceeding from an ovarium which is perfectly sinple. This is the striet definition of the term drupa, which canmot strictly be applied to any compound fritt, as that of Cocos, certain Verbenacea, and others, ns it often is. Fruits of the last description are generaly carcerules with a drupaceous coat. The stone of this fruit is the Nux of Richard, but not of others.
Exampler. Peach, Plun, Apricot.
IV. Follicueus, Follicle. (Hemigyrus, Destaux: Plopotarpium, Dese) fig. 141.
Onc-eelieit, one- or many-seeded, one-valved, superior, dehiseent by a suture along its face, and bearing its seeds at the base, or on eacl margin of the sutuve. This differs from the legumen in nothing but its having one valve: instead of two. The Hemigyrus of Deswaux is the fant of Protencere, and differs from the folliele in nothing of importnoe. When several follicles are in a siugle flower, as in Nigella and Delphinium, they constitute a form of firuit alled Plopocarpium by Desvaux, and adnitted into his Etserio by Mirbel.

Examples. Preonia, Banksia, Nigella.
V. Legemen. Pod. (Legumen, Linn.; Gousse, Pr.) rot 138, 139.

One-celled, one- or many-seeded, two-valved, superior, dehiscent by a suture along both its face and tis baek, and bcaring its seeds on each margin of the ventral biture. This differs fron the follicle in nothing except its dehiscing by two valves. In Astragalus two spurious cells are formed by the projection inwards of either the dorsal or ventral suture, which forms a sort of dissepiment; and in Cassia a great number of transverse diaphrigms (phragmata) are formed by projections of the placenta. Sometimes the legumen is indehiscent, as in Cathartocarpus, Cassia fistrula, and athers; but the line of dehiscence is in such species indicated by the presence of sutwes. When the two sutures of the legumen separate from the ralves, they form a kind/ of frome called replum, as in Carmichaelia.

Eecmples. Bean, Pea, Clover.
VI. Lowerithi, (Legumen lomentacenm, Rich.)

Differs from the legumen in being contracted in the spaces between such seed, and tiome separating into distinct pieces; on indehiscent, but divided by
internal spurious dissepiments, whence it appears at maturity to consist of many articulations aud divisions.

Erample. Ornthopus,

145. Samara. 146. Capqule of Rhododendron, 147. Capgule of Rhododeddron ijwided across, 148. Captule of Stixphylea. 149, 150. Cypsela of Compositiz. 15l. Cappule of Aristolowhia 159. Capsule of Aristolochia cut across. 153. Capsule of Staphylea cut across.

Class II. Fruit aggregate. AGGREGATI. Otarid strictly sinple; more thon a single series produced by each flower.
VII. Etario, Míb. (" Polychorion, Mirb.;" Polysecus, Deavouc; Amalthea, Degv.; Erythrostomum, Desvectar.) fig. 169.
Ovaries distinct; pericarpia indehiscent, either dry upon a dry receptacle, as Ranumeulus, dry upon a fleshy receptacle, as Strawbery, or fleshy upon a dry receptacle, as Rubus. The last is very дear the syncarpiom, from which it differs in the ovaria not coalescing into a single mass. It is Desvaux's Erythrostomum. This term is applied less strietly by M. Mirbel, whoadmits into it dehiscent pericarpit, not placed upou an elevated receptacle, as Delphinium and Pmonia; but the finit of these plants is better understood to be a union of several follicules within a single fower. If there is no elevated receptacle, we have Desvaux's Anmathea. The parts of an Eterio are Achenia.

Eownples. Ratunculus, Fragaria, Rubus.
VIII. Syxcareiom. (Syncarpium, Rioh.; Astmina, Desv.)

Ovaries colering into a solid mass, with a slender receptacle.
Etamples. Anona, Magnolia.
IX. Cxambinonem, (Cynarrhodum, oficir, Desoume)

Ovaries distinct; pericarpia havd, indeliseent, enclosed within the fleshy tube of a calyx.

Examples, Rosa, Calycanthus.

 163. Elamio of Juluas. 16t. L'tanio of Bomginacer,

> CLiss III, Fruit sompound. SYNCARPI, Ororta componer.

Sect. 1. Fruit superior.

> A. Periearpium dry:
X. Chryopsis. (Cariopsis, Rich; Cerio, Mieb.)

One-celled, one-seeded, superior, indehiscent, dry, with the integuments of the sced cohering inseparably with the eudocarpiam, so that the two are uudistinguishable; in the ovarium state efinoing its eompound nature by ile presenec of two or more stignata; but nevertheless unilocular, and having but one ovalum.

Examples. Wheat, Bearley, Maize.
XI. Regua, Merb. (Elaterium, Rich.; Capsula tricocen, 2 .)

Thluee or more celled, fow-seeded, superion, dry, the cells bursting from the axis with elasticity into two valves. The outer cont is frequently softer than the cudocarpium or inner woat, and separates from it wheu ripe; such regmafa are drupaceous. The cells of this kind of frut are called cocci.

Exampe. Euphorbia.
Nil, Carcertules, Mirb. (Dieresilis, Miv.; Conobio, Mirb: Synochorion, Mitb; Sterigmura, Desvaux; MLicrobasis, Devenu*; Folexostylus, Mirb; Garcobasis, Dec., Desv.; Baceaularius, Dest.)
Many-celled, superior : cells dry, indehiscent, few-sceded, cohering by a common style round a commonexis. From this the Dieresilis of Mirbel does not differ in any essential degrec. The samo writer colls the frait of Labiate (for, 162), which Limeeus and his followers mistake for maked seeds,

Conobio: it differs from the Carcernlus in noding but the low insertion of the style into the ovaria, and the distimetness of the latter.

Examples. Tilia, Typpolum, Malva.

Two or more celled, superior; cells few-seeded, indehiseent, dry; clongated into wing-like expansions. This is nothing but a noolification of the Carcerule.
Exumples. Fraxinus, Lecr, Ulmus.
 fig. 154.
One-celled, many-seeded; superior, or nearly so; dry, often of a thin texture; dehiseent by a transverso incision, so that when ripe the seed and their placenta appear as if seated in a cup, covered with in lid. This frutt is onecelled by the obliteration of the dissepinents of seferal carpella, as is appayent from the bundles of vessels which pass from the style throught the pericamiunn down into the receptacle.
Example. Anagallis.
XV. Coscertactlum. (Conceptaculum, Linn; Double Folheule, Mirb.) for 141 .
Tro-colled, many-seeded, superior, separating into two portions, the seeds of which do not adhere to marginal placentae, as in the folliculus, to which this closely approaches, bot separate from their placentee, and lie lopse in the cavity of each cell.

Eramples. Asclepins, Echites.
XVI. Gifidut, Linn. fig 157, 158, 159 .

One- or two-celled, many-seeded, superici, hincar, deliscent by two ralves separating from the replum; seeds attached to two placenta adhering to the replum, and oposite to the lobes of the stigma. The dissepiment of this fruit is considered a spurious one formed by the projecting phacentw, whieh gometines do not meet in the middle; in which case the dissepinment or phragma has a slit in its centre, and is said to lue ferestrate.

Examples. Cheiranthus, Arabis.
XYII. Sinicuta, Lima.
This differs from the latter in nothing but its firure, and in containing fewer seeds. It is never mone than four times as long ns brond, and ofter much shorter.
Evemptes. Thaspi, Lepidium, Lunaria.
XVIML. Ceratiust. (Capsula siliquiformis, Dec.; Coneeptaculum, Dese.)
One-celled, many-seeded, superior, linear, dehiscent by two valvet separating from the replura; seeds attached to two spongy pheento adhering to the replum, and aldernote with the lobes of the stigma. Differs fiom the siliqua in the lobes of the stigtna being altermate with the placenta, not opposite. This, therefore, is regular, while that is irregular, in structure.

Examples. Glancium, Corydalis, Hypecoum.
XIX. Carsuld. Capwile. fig, 146, 14T, 151, 152, 136, 137.

One- or many-celled, many-seded, superion, dry, dehiscent by valves, abways proceding from a compound owarium. The valyes are variable in theis
nature: usuatly they are at the top of the fruit, and equal in number to the cells; sonatimes they are twice the number; ocessionally they resemble little pores or holes below the summit, as in the Antiminum,

Exomples. Digitalis, Primula, Rhododeadron.
XX. Amphisarca. (Amphisarca, Desv.)

Many-celled, many-seeded, superior, indehiseent; indurated or woody extervally, pulpy internally.

Examples. Omphalocarpus, Adansonia, Orescentia.

B. Pericarpium fleshy.

XXL Terom. (Tryma, Fatem.)
Superior, by abortion one-celled, one-seeded, with a two-valved indehiscent ondocarpium, and a coriaceous or fleshy valveless sarcocarpium.

Example. Juglans.
XXII. Nuculamicm, (Nuculanium, Rict.; Bacea, Desvatar.)

Two or more celled, few- or many-seeded, superior, indehiscent, fleshy, of the same texture throughout, contanning more seeds than one, improperly called numblea by the younger Richard. This differs scarcely at all from the berry, except in being superior.

Eromples. Grape, Achris.
XXIII. Hesperidicur (Hesperidium, Desv, Fich.)

Many-celled, few-seeded, superior, indehiscent, covered by a spongy separable rind; the cells easily separable from each other, aud containing a masi of pulp, in which the seeds are embedded. The pulp is formed by the cellular tissue, which forms the lining of the cavidy of the cells ; this eellular tissue is excessively enlarged and succulent, is filled with fluid, and easily coheres into a siagle mass. The extermal rind is by M. De Candolle supposed to be an clevated discus of a peculiar kind, aunlogous to that within which the fruit-of Nelumbium is seated; and perhaps its separate texture and slight connexion with the cells of the fruit seen to favour this supposition. But it is difficult to reconcile with such a hypothesis the continuity of the rind with the style and stigna, which is a sure indieation of the identity of their origins and it is cortain that the sholl of the ovariun and the pericarpium are the same. The most correct explanation of this structure is to consider the rind a union of the epiearp and sarcocarp, analogons to that of the drupa.

Example. Orange.
Sect. 2. Fruit inferior
A. Pericarpiund dry.
XXIV. Glass. (Glans, Litur., Dene: Calybio, Mirb; Nucula, Deneaco, fty. 166.
One-celled, one- or few-seeded, inferior, indehiscent, baxd, dry; proceeding from an ovarium containing several cells and several seeds, all of which are abortive but one of two; seated in that kind of persistent involucre called a cupule. The pericarpium is always crowned with the remains of the teeth of the calyx; but they are exceedingly minute, and are easily overlocked.

Sometimes the gland is solitary, and quite naked above, as in the common oak; aometimes there is more than one completely enclosed in the cupule, as the beech and sureet chesnut.

Eromytes. Quercus, Corylus, Castanea.
XXV. Cyperd. (Akena, Necier; Akenium, Mich.; Cypsela, Mirb.; Stephanoum, Deav.) fity. 149, 150.
One-seeded, one-celled, indehiscent, with the infeguments of the seed not cohering with the endocarpium; in the orarium state evincing its componud nature by the presence of two or more stigmata; but nevertheless uilocular and having but one ovalum. Such is the true structure of the Achenium; but as that term is often appled to the simple superior fruits, called Nux by Linncus, I have thought it better, in order to avoid confusion, to adopt the name Cypsela.

Examples. All Composites.
XXVI, Gremocarpitim. (Cremocarpium, Mivb; Polakeninm, or Peutakenium, Rid.; Carpadelium, Desv.) fog. 155, 160, 161.
Two- to five-celled, inferior; cells one-seeded, indehiscent, dry, perfectly close at all times; when ripe separating from a common axis. Mi. Mirbel confines the application of cremocarpium to Umbelifera: but it is better to let it apply to all fruts which will cone within the above defuition. It wilh then be the same as Richard's Polakenium, excluding those forms in which the frut is superior. The latter betanist qualifies his term Polakenium according to the number of cells of the fruit: thus when there are two cells it is diakemitm, three triakeniom, and so on. M. De Candolle calls the half of the fruit of Umbellifera mericarp.

Examples. Umbellifers, Aralia, Galium.
XXVII. Diflotegis. (Diplotegia, Desu.)

One- or manywelled, many-seeded, infexior, dry, usually bursting either by pores or valwes. This differs from the capsule only in being adherent to the calyx.

Eramples. Campanula, Leptospermura.

B. Pericarpium fiebly.

XXYIII, Pomuar. Apple, or Pome. Melonidium, Rich.; Pyridium, Mirb; Pyyenarium, Destaut; Antaum, Mcench.) Ag. 167.
Two or more celled, few-seeded, inferior, indehiscent, fleshy; the seeds distinctly enclosed in dry cells, with a bony or cartilaginous lining, formed by the cohesion of several ovaria with the sides of the fleehy tule of a calyx, and sometimes with each other. These ovaria are called. Parietal by M. Richard. Some forme of Nuculanium and this differ only in the former being distinet from the calyx.

Examples. Apple, Cotonesster, Cratetgus.
XXIX. Pepo, (Peponida, Rich.)

One-celled, many-seeded, infertor, imdehiscent, fleshy; the seeds attached to parietal pulpy phacentse. This fruit bas its cavity frequently filled at maturity
with pulp, in which the seeds are ombedded; their point of attachment is, however, never lost. The eavity is also oceasionally divilied by folds of the placenta into spurious cells, which has given rise to the belief that in Fepo macrocarpus there is a central cell, which is not only untrue but impossible.

Eacomples. Cucumber, Melon, Gourd.
XXX. Bacca. Bory. (Dacea, L; Acrosaveum, Deswate) ffy 162.

One or more celled, many-seeded, inferior, indeliscent, pulpy; the attachment of the seed lost at maturity, when they becone scattered in the substance of the pulp. This is the trus meaning of the term berry; which is, however, often othervise applied, either from mistating mucules for seeds, or from a misapprehension of the strict limits of the term.

Example. Ribes.
XXXI. Baladsta, (Balausta, Opmein. Riche)

Many-celled, many-seeded, inferior, indehisecnt; the needs with a pulpy coat, and attached distinctly to their placentre, The rinl was called Malizoriom by Ruellias.

Example. Pomegranate.

Class IV. Collective Fruits. ANTHOCARPI.
Prutit of which the frincipal chareters are derived from the wichened floral ewelopes.
XXXII. Diclesium. (Dyclesium, Desvadx; Scleranthum, Moneh; Cataclesium, Descaux; Sacelles, Mirb.)
Pericarpiam indehiscent, one-seeded, enclosed within an iudurated perianthiurn.

Excomples. Mirabilis, Spingeia, Stsola,
XXXIIT. Spyalerocarpum, (Sphatevocarpum, Destory: Nux baceata of authors.)
Pericarpium indeliscent, one-seeded, enclosed within a fleshy periauthium. Evanptes. Hippophte, Taxus, Blitum, Baselin,

XXXIV, Syconos. (Syeonus, Mind.)
A flesty rachis, baving the form of a flattened dish, of of a hollow receptacles with distinet flowers and dry pericarpia.

Eramples. Ficus, Dorstenia, Arnbora.
XXXV. Strobilus. Cone. (Conus, or Strobilus, Rich., Mitb; Galbulus, Gortin: Areesthide, Denwat; Caclurys, Fuchs; Pilula, Pltay.) fig. 168.
An anentum, the carpella of which are seale-ike, spread open, and bear naked seeds; sometimes the scales are thin, with little collesion; but they often are woody, and coleve into a single taberculated mass.

The Galbulus differs from the strobilus only in being round, and having the heads of the carpella muel enlarged. The fruit of the Junipex is a Galbulus with fleshy coalescent carpella. Deswax calls it Arcesthide.

Example. Pinus.

XXXYI. Sonosis. (Sorosts, Misd.)
A spike or meeme converted into a fleshy frut by the colhesion, in a single mass, of the ovaria and floral envelopes.

Examples. Andrassa, Morus, Arwearpus.

15. Of the Seed.

The seed is a body enclosed in a pericarp, is clothed with its own integuments, and contains the rudiment of a future plant. It is the point of development at which vegetation stops, and beyond which no increase, in the same direction with itself, can take place. In a young state it has already been spoken of under the name of ovule; to which I also refer for all that relates to the insertion of seeds.

That side of a seed which is most nearly parallel with the axis of a compound frait, or the rentral suture or sutural line of a simple fruit, is called the face, and the opposite side the back. In a compound fruit with parietal placente, the placenta is to be considered as the axis with respect to the seed; and that part of the seed which is most nearly parallel with the placenta, as the face. Where the raphe is visible, the face is indicated by that.

When a seed is flattened lengthwise it is said to be compressed, when vertically it is depressed; a difference which it is of importance to bear in mind, although it is not always easy to ascertain it: for this purpose it is indispensable that the true base and apex of the seed should be clearly

