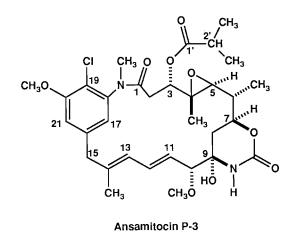
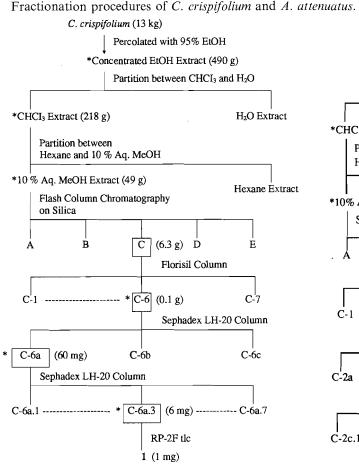
Ansamitocin P-3, a maytansinoid, from *Claopodium crispifolium* and *Anomodon attenuatus* or associated actinomycetes 1, 2

K. Suwanborirux, C.-J. Chang, R. W. Spjut^a and J. M. Cassady^{b, 3}


Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette (Indiana 47907, USA), ^a World Botanical Associates, P.O.Box 2829, Laurel (Maryland 20708, USA), and ^b College of Pharmacy, Ohio State University, 500 W. 12th Avenue, Columbus (Ohio 43210, USA) Received 6 March 1989; accepted 18 July 1989

Summary. Guided by cytotoxicity, ansamitocin P-3, a maytansinoid, was isolated in very low yield from two members of the moss family Thuidiaceae, *Claopodium crispifolium* (Hook.) Ren. & Card. and *Anomodon attenuatus* (Hedw.) Hueb. Ansamitocin P-3 showed potent cytotoxicity against the human solid tumor cell lines A-549, HT-29. A possible basis for the occurrence of this compound in mosses is discussed.


Key words. Ansamitocin P-3; maytansinoids; Claopodium crispifolium; Anomodon attenuatus; Thuidiaceae; mosses; cytotoxicity; antitumor activity.

Previous screening for antitumor activity among the bryophytes (mosses, liverworts and hornworts) was established by cooperation between the US Department of Agriculture and the National Cancer Institute⁴. Among those species tested, two thuidiaceous mosses, Claopodium crispifolium (Hook.) Ren. & Card. and Anomodon attenuatus (Hedw.) Hueb. exhibited significant activity against P-388 lymphocytic leukemia in mice and both 9PS (murine lymphocytic leukemia) and 9KB (human nasopharyngeal carcinoma) cell culture systems and were, therefore, selected for further investigation to isolate the compounds responsible for the biological activity. In this communication, we report the cytotoxicity bioassay-directed isolation and identification of the active constituent, ansamitocin P-3 (1), from the active 10% aqueous methanol extracts of these two mosses.

C. crispifolium was collected from rocks on steep slopes in a Douglas fir forest in Oregon during May, 1981. The bioassay-guided fractionation of C. crispifolium is illustrated in the scheme. The whole air dried moss (13 kg)was ground and slowly percolated with 95% ethanol. The concentrated extract was partitioned between water

and chloroform, and the concentrated chloroform extract was further partitioned between hexane and 10% aqueous methanol. The 10% aqueous methanol extract (49 g) showed cytotoxicity against 9PS and 9KB cells in culture at $ED_{50} = 3 \times 10^{-1} \mu$ g/ml and antitumor activity against the P-388 system in mice at %T/C = 147–

A. attenuatus (27 kg) Percolated with 95% EtOH *Concentrated EtOH Extract (825 g) Partition between CHCl₃ and H₂O *CHCl₃ Extract (528 g) H₂O Extract Partition between Hexane and 10% Aq. MeOH *10% Aq. MeOH Extract (59 g) Hexane Extract Silica Column ģ (8.2 g) C Sephadex LH-20 Column C-5 C-2 (0.8 g)Sephadex LH-20 Column C-2d C-2c | (125 mg) Florisil Column C-2c.1 C-2c.6 (5 mg) ----- C-2c.8 C-18F tlc 1 (1.2 mg)

*biological active fraction

200 mg/kg⁵. This active crude extract was then subjected to chromatography on a silica gel (1.5 kg, E. Merck, 230-400 mesh) flash column (10×100 cm) eluted with 201 of 2% and 121 of 5% methanol in chloroform; 500-ml fractions were collected and pooled into five major fractions (A-E). The activity was concentrated in fraction C which was eluted with 2% methanol in chloroform between volumes 12-18.51. Fraction C (6.3 g) was further chromatographed on a Florisil column (400 g, Analtech, 60-100 mesh, 5×75 cm) with increasing methanol in chloroform (4 l each); 25-ml fractions were collected. Fractions 330-380 eluted with 20% methanol in chloroform were pooled and concentrated in vacuo to give the active fraction C-6 (110 mg, 9 PS $ED_{50} < 10^{-4} \mu g/ml$). Further purification was performed on a Sephadex LH-20 column (20 g, Pharmacia, 1×100 cm) using dichlormethane-methanol (5:1) as an eluent. The active material was concentrated between volumes 30-110 ml (fraction C-6a, 60 mg). Chromatography of this fraction on a Sephadex LH-20 column $(30 \text{ g}, 1 \times 100 \text{ cm})$ with dichloromethane-hexane (5:1)gave the active fraction C-6a.3 (6 mg, HT-29 ED₅₀ $= 2 \times 10^{-6} \,\mu g/ml$, eluted between volumes 270–320 ml. Final purification was achieved by chromatography on a RP-2F reversed phase TLC plate (EM Science, 0.25 mm) using tetrahydrofuran-water (1:1) as a developing solvent to yield about 1 mg of the active compound $1 (1 \times 10^{-5\%})$ yield).

A. attenuatus was collected from rocks and trees of very steep slopes in the forest of West Virginia in September, 1985. As shown in the scheme, extraction of the air dried moss (27 kg) was performed as that of C. crispifolium to give the active 10% aqueous methanol extract (59 g, ED₅₀, 9PS = 5×10^{-1} , 9KB = 7×10^{-1} , HT- $29 = 2 \times 10^{-1}$ and A-549 = $3 \times 10^{-1} \text{ µg/ml}$; %T/C of P-388 in mice = 151-200 mg/kg). Silica gel column chromatography (2 kg, 10×100 cm) eluted with 201 of chloroform, 301 of 2% and 201 of 5% methanol in chloroform gave 6 major fractions (A-F). The active fraction C (8.2 g, HT-29 ED₅₀ = $2 \times 10^{-2} \mu g/ml$), eluted by 2% methanol in chloroform between volumes 28-39.5 l, was further purified (2 g at a time) by a Sephadex LH-20 column (250 g, 4×100 cm). Elution (20 ml-fractions) was begun with 1.51 of dichloromethane followed by 21 of 20% methanol in chloroform and 11 of methanol. Fraction C-2 (0.8 g), eluted between volumes 1380–2120 ml, was rechromatographed on a Sephadex LH-20 column (150 g, 2×100 cm) using 1.51 of

119

dichloromethane-hexane (1:1) as eluent. Fractions (20 ml each) were collected and combined into four fractions. The eluting volume (860–1220 ml) provided fraction C-2c (125 mg) which had activity against HT-29 at ED₅₀ < 10⁻³ µg/ml. Using Florisil column chromatography (60 g, 2 × 70 cm) with 21 of chloroform and increasing methanol in chloroform (0.61 each) as eluant concentrated the activity in a 5 mg fraction (C-2c.6) which was eluted by 20% methanol in chloroform. This active fraction was finally purified by a C-18F reversed phase TLC plate (Whatman 0.20 mm) developing with a mixture solvent of acetonitrile, methanol and water (1:6:3) to obtain about 1.2 mg of compound 1 (4 × 10^{-6%} yield).

Compound 1 was optically active $([\alpha]_D^{20} = -75^\circ)$, C = 0.1, CHCl₃). The 470 MHz ¹H *nmr* spectral analysis (table) and spin decoupling experiments of 1 indicated the presence of six molecular fragments, three methyl groups connecting to heteroatoms, one tertiary methyl group and two protons which were exchangeable with D_2O . The FAB mass spectrum of 1 using DTT/DTE as a matrix showed protonated molecular ion peaks at m/z 635 (26%), and m/z 637 (12%) with the relative intensity indicating the presence of one chlorine atom. The uv spectrum of 1 showed maximum absorption at 232, 240 (sh), 252, 280 and 288 nm; and the ir spectrum showed carbonyl absorptions at 1730, 1700, 1650 cm⁻¹ as well as C-C double bond absorption at 1560 cm^{-1} . These data are typical of the maytansinoid group 8,9. Comparison of the uv, ir, ¹H-nmr spectral data of 1 with literature data^{6, 8, 9} and direct comparison of **1** with the authentic sample clearly confirmed that 1 is identical to ansamitocin P-3. The absolute configurations of maytansinoids were established to be 3S, 4S, 5S, 6R, 7S, 9S and 10R^{8,9}. Further biological evaluation of ansamitocin P-3 showed potent cytotoxicity against the human solid tumor cell line systems A-549 (lung carcinoma), HT-29 (colon adenocarcinoma) and MCF-7 (breast adenocarcinoma) at $ED_{50} = 4 \times 10^{-7}, 4 \times 10^{-7}, 2 \times 10^{-6} \,\mu\text{g/ml}$, respectively. The correlation of this cytotoxicity to the dose re-

470 MHz ¹H nmr data of 1^a.

Proton	δ, J	Proton	δ, J
2a	2.20 dd(3.0, 13.8)	11	5.46 dd(9.0, 15.5)
2b	2.56 dd(12.0, 13.8)	12	6.44 dd(11.2, 15.5)
3	4.82 dd(3.0, 12.0)	13	6.16 bd(11.2)
4-CH ₃	0.82 s	14-CH ₃	1.70 bs
5	2.96 d(9.7)	15a 🥤	3.20 d(12.8)
6-CH ₃	1.29 d(7.1)	15b	3.52 d(12.8)
6	1.45 m(7.1, 9.7, 11.0)	17	6.88 d(1.5)
7	4.27 bt(11.0)	18-NCH ₃	3.16 s
8a	1.23 dd(11.0, 13.7)	20-OCH3	3.99 s
8b	1.64 bd(13.7)	21	6.84 d(1.5)
9-OH	3.00 s	2'	2.60 m(6.8, 7.1)
9-NHCO-	6.21 bs	2'-CH3	1.21 d(6.8)
10	3.50 d(9.0)	2'-CH3	1.28 d(7.1)
$10-OCH_3$	3.36 s	,	

^aData were recorded in CDCl₃ solution (δ in ppm, J in Hz), using TMS as an internal reference on a Nicolet NT-470 spectrometer.

sponse of the crude active fractions confirmed that ansamitocin P-3 was responsible for antitumor activity in these two thuidiaceous mosses, *C. crispifolium* and *A. attenuatus*. Recently, Sakai et al.⁷ reported the first occurrence of maytansinoids including a new derivative, 15-methoxyansamitocin P-3, from the Japanese mosses *Isothecium sudiversiforme* (Lembophyllaceae) and *Thamnobryum sandei* (Neckeraceae). Ansamitocin P-3 is a member of the group of maytansinoids^{8,9} which were previously isolated from the culture broth of *Nocardia* sp.

The variation in bioactivity (9KB, $ED_{50} = 2 \times 10^{\circ} 6 \times 10^{-2} \,\mu\text{g/ml}$ and P-388 %T/C = 123-156) among nine samples of C. crispifolium collected from various locations in California and Oregon¹⁰ suggested that other organisms might account for the bioactivity of the moss. The co-occurrence of ansamitocin P-3 in mosses in very low yield and in the actinomycete Nocardia might suggest a possible association between the active mosses and the maytansinoid-producing microorganisms. The actinomycetes are described as prokaryotic bacteria having the ability to form branching hyphae. Mycelial-like substances were frequently observed underneath moss carpets when collecting the moss samples during rainy periods and it was impractical to clean the moss samples absolutely free of foreign materials including these mycelia. Although, moss-actinorhizal relationships are not known, many species of bacteria and fungi also grow among mosses and in some cases their associations are specific¹¹⁻¹⁴. Spiess et al.¹¹ have hypothesized that moss-associated bacteria induced moss to produce a particular substance(s) and facilitated the moss growth. However, we cannot rule out the possibility that the moss itself produces maytansinoids as an alleopathic response to the microorganisms⁶. To clarify the source of maytansinoids precisely, further research is currently underway to isolate and identify the maytansinoid-producing microorganism(s) from the moss samples.

- 5 Geran, R. I., Greenberg, N. H., MacDonald, M. C., Schumacher, A. M., and Abbott, B. J., Cancer Chemother. Rep. 3 (1972) 1.
- 6 Asai, M., Mizuta, E., Izawa, M., Haibara, K., and Kishi, T., Tetrahedron 35 (1979) 1079.
- 7 Sakai, K., Ichikawa, T., Yamada, K., Yamashita, M., Tanimoto, M., Hikita, A., Ijuin, Y., and Kondo, K., J. nat. Prod. 51 (1988) 845.

¹ Presented at the XV International Symposium on Natural Product Chemistry, Monterrey (Mexico) April 28–30, 1988 and at the International Research Congress on Natural Products, Park City (Utah, USA) in July 1988.

² Acknowledgments. This work was supported by grant No. CA 33326 from the NCI, NIH, USA. K.S. is the recipient of support from the Anandha-Mahidol Foundation, Thailand. The 470 MHz NMR instrument was available through the Purdue University Biochemical Magnetic Resonance Laboratory supported by NIH grant No. RR1077 from the Biotechnology Resources Program of the Division of Research Resources. Special thanks are due to the Purdue Cell Culture Laboratory for in vitro testing data and to Dr M. Antoun for *C. crispifolium* extraction. The animal testing data are the results of screening performed under the auspices of the Developmental Therapeutics Program, Division of Cancer Treatment, the NCI.

³ To whom reprint requests should be addressed.

⁴ Spjut, R. W., Suffness, M., Cragg, M. G., and Norris, D. H., Econ. Bot. 40 (1986) 310.

Research Articles

- 8 Powell, R. G., and Smith, C. R. Jr, in: Alkaloids, vol. 2, p. 149. Ed. S. W. Pelletier. John Wiley & Sons, New York 1984.
- 9 Reider, P. J., and Roland, D. M., in: The Alkaloids, vol. 23, p. 71. Ed. A. Brossi. Academic Press, Orlando 1984.
- 10 Spjut, R. W., Cassady, J. M., McCloud, T., Suffness, M., Norris, D. H., Cragg, G. M., and Edson, C. F., Econ. Bot. 42 (1988) 62.
- 11 Spiess, L. D., Lippincott, B. B., and Lippincott, J. A., J. Hattori Bot. Lab. 55 (1984) 67.
- 12 Caldewell, B. A., Hugedorn, C., and Denison, W. C., Microbial Ecol. 5 (1979) 91.
- 13 Crass, S. M., and Scheirer, D. C., Bryologist 84 (1981) 348.
- 14 Fenton, J. H. C., Trans, Br. mycol. Soc. 60 (1983) 415.
- 0014-4754/90/010117-04\$1.50 + 0.20/0 © Birkhäuser Verlag Basel, 1990